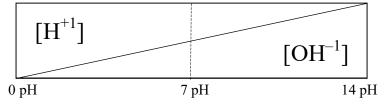

Arrhenius Theory of Acids and Bases

- 1. Acids = aqueous solutions with excess H^{+1} ions
- 2. Bases = aqueous solutions with excess OH^{-1} ions
- 3. Acid + Base \rightarrow Water and a Salt

Ammonia (NH₃) is a base, but it has no hydroxide ions. An alternate theory (Bronsted-Lowry) explains it.

ammonia accepts H⁺¹ water donates H⁺¹

NH₃ is a base because it accepts a H⁺¹ ion H₂0 is an acid because it donates a H⁺¹ ion


4 ways to describe an ACID with chemical symbols

H⁺¹ Arrhenius style

p⁺¹ a hydrogen ion is really just a proton
 any substance able to donate a H⁺¹ ion,
 according to the alternate theory

H₃O⁺¹ the dreaded, silly, hydronium ion where the H⁺¹ ion "becomes one" with the water!

Acid Base Indicators are (mostly) weak acids in
Dynamic Equilibrium. The molecule and the anion are different
colors. A LeChatlier Shift caused by the
"stress" of adding acid or base shifts forward or reverse.
This example is PHENOLPHTHALIEN.

Acids have a low pH, they also have LOTS of H⁺¹ ions, and very few OH⁻¹ ions.

Bases have a high pH, they also have lots of OH^{-1} ions, and very few H^{+1} ions.

Neutral means the $\# H^{+1} = \# \text{ of } OH^{-1}$

Titration Formula (fixed)

$$(\#H^{+1})(M_AV_A) = (M_BV_B)(\#OH^{-1})$$

which means

 $\#H^{+1}$ is the number of hydrogen ions in the acid formula M_A is the molarity of the acid, V_A is the volume of the acid

 M_B is the molarity of the base, V_B is the volume of the base $\#OH^{-1}$ is the number of hydroxides in the base formula.

Strong Acids dissociate (or ionize) almost completely.

$$HC1 + water \rightarrow H^{+1}_{(AQ)} + Cl^{-1}_{(AQ)}$$

In water, weak acids dissociate (ionize) into dynamic equilibrium. All molecules dissolve because they are polar, but most stay "whole".

$$HC_2H_3O_2 \quad \longleftarrow \quad H^{+1}{}_{(AQ)} \ + C_2H_3O_2^{-1}{}_{(AQ)} + HC_2H_3O_{2(AQ)}$$

pH is the measure of strength of the acid or base. $[H^{+1}]$ is the molarity of the hydrogen ions.

$$pH = -log \ [H^{+1}] \qquad \qquad \begin{array}{c} High \\ Molarity \\ of \ H^{+1} \\ pH \ 0 \ means: \ [H^{+1}] \ = 1 \ x \ 10^0 \ moles \ H^{+1} / \ liter \\ pH \ 1 \ means: \ [H^{+1}] \ = 1 \ x \ 10^{-1} \ moles \ H^{+1} / \ liter \\ pH \ 7 \ means: \ [H^{+1}] \ = 1 \ x \ 10^{-7} \ moles \ H^{+1} / \ liter \\ pH \ 11 \ means: \ [H^{+1}] \ = 1 \ x \ 10^{-11} \ moles \ H^{+1} / \ liter \\ pH \ 14 \ means: \ [H^{+1}] \ = 1 \ x \ 10^{-14} \ moles \ H^{+1} / \ liter \\ of \ H^{+1} \\ \end{array}$$